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Abstract
Many shared computing clusters allow users to utilize ex-

cess idle resources at lower cost or priority, with the proviso
that some or all may be taken away at any time. But, exploit-
ing such dynamic resource availability and the often fluc-
tuating markets for them requires agile elasticity and effec-
tive acquisition strategies. Proteus aggressively exploits such
transient revocable resources to do machine learning (ML)
cheaper and/or faster. Its parameter server framework, Ag-
ileML, efficiently adapts to bulk additions and revocations
of transient machines, through a novel 3-stage active-backup
approach, with minimal use of more costly non-transient
resources. Its BidBrain component adaptively allocates re-
sources from multiple EC2 spot markets to minimize aver-
age cost per work as transient resource availability and cost
change over time. Our evaluations show that Proteus reduces
cost by 85% relative to non-transient pricing, and by 43%
relative to previous approaches, while simultaneously reduc-
ing runtimes by up to 37%.

1. Introduction
Statistical machine learning (ML) has become a primary

data processing activity for business, science, and online
services that attempt to extract insight from observation
(training) data. Generally speaking, ML algorithms itera-
tively process training data to determine model parameter
values that make an expert-chosen statistical model best fit it.
Once fit (trained), such models can predict outcomes for new
data items based on selected characteristics (e.g., for recom-
mendation systems), correlate effects with causes (e.g., for
genomic analyses of diseases), label new media files (e.g.,
which ones are funny cat videos?), and so on.

ML model training is often quite resource intensive, re-
quiring hours on 10s or 100s of cores to converge on a solu-
tion. As such, it should exploit any available extra resources
or cost savings. Many modern compute infrastructures offer
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Figure 1: Cost and time benefits of Proteus. This graph shows
average cost (left axis) and runtime (right axis) for running the
MLR application (see Section 6.2) on the AWS EC2 US-EAST-
1 Region. The three configurations shown are: 128 on-demand
machines, using 128 spot market machines with checkpoint/restart
for dealing with evictions and a standard strategy of bidding the on-
demand price, and Proteus using 3 on-demand and up to 189 spot
market machines. Proteus reduces cost by 85% relative to using all
on-demand machines and by ≈50% relative to the checkpointing-
based scheme. Full experimental details can be found in Section 6.

a great opportunity: transient availability of cheap but revo-
cable resources. For example, Amazon EC2’s spot market
and Google Compute Engine’s preemptible instances often
allow customers to use machines at a 70–80% discount [2]
off the regular price, but with the risk that they can be taken
away at any time. Many cluster schedulers similarly allow
lower-priority jobs to use resources provisioned but not cur-
rently needed to support business-critical activities, taking
the resources away when those activities need them. ML
model training could often be faster and/or cheaper by ag-
gressively exploiting such revocable resources.

Unfortunately, efficient modern frameworks for parallel
ML, such as TensorFlow [6], MxNet [9], and Petuum [37],
are not designed to exploit transient resources. Most use
a parameter server architecture, in which parallel work-
ers process training data independently and use a special-
ized key-value store for shared state, offloading communi-
cation and synchronization challenges from ML app writ-
ers [10, 22, 25]. Like MPI-based HPC applications, these
frameworks generally assume that the set of machines is
fixed, optimizing aggressively for the no machine failure and



no machine change case (and restarting the entire compu-
tation from the last checkpoint on any failure). So, using
revocable machines risks significant rollback overhead, and
adding newly available machines to a running computation
is often not supported.

This paper describes Proteus—a parameter server system
that combines agile elasticity with aggressive acquisition
strategies to exploit transient revocable resources. Figure 1
illustrates the benefits for one ML example on Amazon EC2.
Using three on-demand instances and up to 189 spot mar-
ket instances, Proteus reduces cost by 85% when compared
to using only on-demand instances, even when accounting
for spot market variation and revocations, while running
24% faster. Compared to using a standard bidding strategy
with a checkpointing-based approach (i.e., run on spot mar-
ket machines and checkpoint regularly to retain progress if
evicted [19, 30, 31]), Proteus reduces cost by ≈50% and
runtimes by 32–43%, winning by avoiding checkpoint over-
heads, reducing restart delays, and exploiting spot market
properties.

Proteus consists of two principal components: AgileML
and BidBrain. The AgileML parameter-server system achieves
agile elasticity by explicitly combining multiple reliability
tiers, with core functionality residing on more reliable re-
sources (non-transient resources, like on-demand instances
on EC2) and most work performed on transient resources.
This allows quick and efficient scaling, including expansion
when resources become available and bulk extraction of re-
voked transient resources without big delays for rolling back
state or recovering lost work. AgileML transitions among
different modes/stages as transient resources come and go.
When the ratio of transient to non-transient is small (e.g., 2-
to-1), it simply distributes the parameter server functionality
across only the non-transient machines, instead of across
all machines, as is the usual approach. For much larger ra-
tios (e.g., 63-to-1), the one non-transient machine would be
a bottleneck in that configuration. In that case, AgileML
uses non-transient machine(s) as on-line backup parame-
ter servers (BackupPSs) to active primary parameter servers
(ActivePSs) that run on transient machines. Updates are co-
alesced and streamed from actives to backups in the back-
ground at a rate that the network bandwidth accommodates.

BidBrain is Proteus’ resource allocation component that
decides when to acquire and yield transient resources. Bid-
Brain is specialized for EC2, exploiting spot market charac-
teristics in its policies, but its general approach would apply
to other environments with transient resources (e.g., private
clusters or other cloud costing models). It monitors current
market prices for multiple instance types, which move rela-
tively independently, and bids on new resources when their
addition to the current footprint would increase work per
dollar. Similarly, resources near the end of an hour may be
released if they have become less cost-effective relative to
others. As part of its considerations, BidBrain estimates the

probability of getting free compute due to instance revoca-
tion within the billing hour (with later in the hour being bet-
ter than earlier) for different bids and spot market conditions.
Simultaneously considering costs (e.g., revocation and scal-
ing inefficiencies) and benefits (e.g., cheaper new resources),
BidBrain finds a happy medium between aggressive bidding
on transient resources and more conservative choices.

Experiments with three real ML applications confirm that
Proteus achieves significant cost and runtime reductions.
AgileML’s elasticity support introduces negligible perfor-
mance overhead, scales well, and suffers minimal disrup-
tion during bulk addition or removal of transient machines.
In breaking down the sources of benefit, we find that both
the agile elasticity of AgileML and the aggressive policies
of BidBrain are needed—using either one alone (e.g., Bid-
Brain with checkpointing instead of AgileML) achieves half
or less of the cost and runtime savings.

This paper makes four primary contributions. First, it de-
scribes the first parameter server ML framework (Proteus)
designed to elastically scale with bulk additions and revo-
cations of transient machines. Second, it describes an adap-
tive architecture+algorithm (AgileML) for exploiting mul-
tiple tiers of machine reliability (i) to more agilely resize in
the face of such changes and (ii) to balance work given dif-
ferent ratios of non-transient to transient resources. Third, it
describes a new resource manager (BidBrain) that aggres-
sively exploits EC2 spot market properties to achieve major
cost savings. Fourth, it presents results from experiments and
analyses showing that aggressive multi-tier exploitation of
transient machines is both possible and beneficial, reducing
costs and runtimes significantly.

2. Motivation and Related Work
This section overviews efficient frameworks for ML

model training, transient availability of revocable clus-
ter/cloud resources, and what is needed for the former to
exploit the latter.

2.1 ML Model Training Frameworks
Statistical machine learning algorithms determine param-

eter values that make a chosen statistical model fit a set of
training data. Most modern ML approaches rely on iterative
convergent algorithms, such as stochastic gradient descent
(SGD), to determine these model parameter values. Such al-
gorithms start with an initial solution guess and refine it over
a number of iterations on the training data, improving an ex-
plicit goodness-of-solution objective function until sufficient
convergence or goodness has been reached.

ML model training is resource-intensive, especially as
model precision grows, and commonly requires parallel exe-
cution to complete in reasonable time. For example, the ML
applications used for experiments reported in Section 6 scale
well with machine count yet still require multiple hours even
when using 10s of multicore machines.
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Figure 2: Traditional Parameter Server Architecture. The left fig-
ure illustrates the logical architecture, and the right figure illustrates
that the parameter server is usually sharded across the same ma-
chines as the workers.

Although iterative convergent ML algorithms can be
built as BSP-style sequences of bag-of-task computations,
such as map-reduce jobs, on systems like Hadoop [4] or
Spark [38], such implementations are inefficient. They pre-
clude several specializations, including flexible consistency
models [11, 25, 27], cross-iteration optimization [12], and
early exchange of updates [36]. Collectively, these special-
izations can provide an order of magnitude or more increase
in training efficiency.

Parameter Server Architectures. The most efficient
modern frameworks for parallel ML use a parameter server
architecture,1 which allows programmers to easily build
scalable ML algorithms while benefiting from such spe-
cializations [10, 20, 22, 25]. As a result, open source ML
model training frameworks like TensorFlow [6], MxNet [9],
Petuum [37] and many proprietary systems use variants of
this architecture.

Fig. 2 illustrates a simple parameter server system. Com-
monly, training data is partitioned among the worker threads
that execute the ML application code for adjusting model pa-
rameter values. The only state shared among worker threads
is the current parameter values, and they are kept in a
specialized key-value store called the “parameter server.”
Worker threads process their assigned training data and use
simple read-param and update-param methods to check
and apply deltas to parameter values. The value type is usu-
ally application-defined, but must be serializable and have
a commutative and associative aggregation function so that
updates from different worker threads can be applied in any
order. For the ML applications used in this paper, the values
are vectors and the aggregation function is component-wise
add (+).

To reduce cross-machine traffic, parameter server imple-
mentations include a worker-side library that caches param-
eter values and buffers updates. While logically a single sep-
arate server (left side of Fig. 2), the parameter server is usu-
ally sharded across the same machines as worker threads
1 A recent study [12] showed two parameter server systems (IterStore [12]
and LazyTable [11]) outperform PowerGraph [16] significantly (factors
of 10X and 2X, respectively) for collaborative filtering via sparse matrix
factorization. The performance advantage of parameter server systems over
bag-of-task systems, for such ML applications, is clarified by combining
those results with a recent study showing that a highly-tuned Spark-based
system called GraphX [17] approximately matches PowerGraph.

(right side of Fig. 2), enabling it to scale with the com-
putation power and aggregate memory and bandwidth used
for training. Threads associated with the worker-side cache
communicate with the appropriate server shards for each
given value. Updates are write-back cached and sent (asyn-
chronously) to the appropriate parameter server shards each
iteration.

Given their resource-intensive nature, ML model training
frameworks should be able to take advantage of any extra
machines or potential cost savings available. Existing solu-
tions that address ML framework elasticity include check-
pointing [19, 30, 31] and Spark RDDs. Spark RDDs in par-
ticular allow fine-granularity Spark application checkpoint-
ing and rollback to handle resource revocations. Elasticity to
transient resources can, thus, be achieved by relying on the
fault tolerance mechanisms of RDDs. There are two prob-
lems with this, first, RDDs work well only for determinis-
tic computation. Second, for highly correlated bulk revoca-
tions, the amount of recovery work approaches that of the
checkpointing mechanisms (see Sec. 8). Our system, Pro-
teus, significantly improves on the performance of check-
pointing both in terms of cost and application runtime.

2.2 Dynamic Availability of Revocable Resources
Today’s cluster infrastructures are increasingly dynamic,

and working with transient resources on a regular basis
is common. Resources may be available as temporarily-
unused nodes on a revocable basis at a discount (in pub-
lic pay-as-you-go clouds) or for lower-priority workloads
(in shared corporate clusters). For both public clouds and
mixed-purpose corporate clusters, lower intensity periods
for business critical workloads create an opportunity for
extra machines to be made available to other workloads.
But, those machines may need to be taken back if business-
critical workload intensity increases. This section describes
how such machines are made available in several modern
infrastructures.

Amazon AWS EC2 Spot Market. Amazon AWS EC2 [1]
is a public cloud that allows customers to purchase time on
virtualized machine resources. The traditional EC2 model,
referred to as “on demand” because machines can be re-
quested and released by customers at any time (though
billing is based on an hourly granularity), involves paying
a pre-determined fixed hourly rate to have guaranteed access
to rented machine resources. Amazon also has a so-called
“spot market” for machines, where machines are often avail-
able at a steep discount (e.g., 70–80% lower price) with the
proviso that they can be taken back at any time. So, a cus-
tomer who can exploit transient machines for their work can
potentially save money and/or time.

The EC2 spot market design has interesting properties
that affect customer savings and the likelihood of eviction.
First, it is not a free market [7]. Customers specify their bid
prices for a given machine class, but generally do not pay
that amount. Instead, a customer is billed according to the
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Figure 3: AWS spot prices over time. Spot prices for two classes of
machines are shown for 6 days in January 2016. The unchanging
on-demand price for c4.2xlarge is shown, and the values shown
for c4.xlarge are doubled so that all three lines show the price for
the same number of cores; c4.2xlarge machines have 8 cores and
c4.xlarge machines have 4 cores.

current EC2-determined spot price for that machine class.
Fig. 3 shows one example of spot price variability over a
week, for two machine classes in an EC2 zone. Second, if a
customer receives machine resources in response to their bid
price, they will retain those resources until either they release
them or the spot price rises above the customer’s bid price.
If the latter occurs, the customer is not billed for the current
hour, but the resources are taken back from the customer.
Third, EC2 does not guarantee any warning when resources
are going to be revoked, but since 2015 EC2 has provided a
two-minute warning prior to eviction in most cases. Fourth,
once a customer submits a bid and receives a resource, the
bid price cannot be changed. The bid can be canceled, if not
yet granted, and a new bid price submitted. But, once the
resource is granted, the bid price cannot be changed until the
resource is terminated.

Google Preemptible Instances. Google Compute En-
gine (GCE) [3] offers revocable machine resources, called
“preemptible instances”, akin to those provided by the EC2
spot market. Google preemptible instances can be revoked at
any time, as the name suggests, but differ from EC2’s spot
market in several ways. First, Google charges a fixed price
of 70% less than the “on-demand” (non-revocable instance)
price for the requested machine type. There is no price vari-
ability. Second, GCE offers a 30-second warning, rather
than a 2-minute warning. Third, GCE limits preemptible in-
stances to 24 hours.

Dynamic Resource Offers in Mixed-Function Corpo-
rate Clusters. Many corporate clusters serve a mix of on-
line services, business critical batch analytics jobs (often
with deadlines), and ad hoc jobs (often called “best effort”)
for application development, exploratory data analyses, etc.
Business critical activities are usually given priority, but ex-
tra resources are often available for ad hoc jobs. Moreover,
modern schedulers for such clusters, such as YARN [33]
and Mesos [21], have mechanisms to offer recently-freed re-
sources to already running jobs’ “application master” com-
ponents, allowing some of them (e.g., large map-reduce
jobs) to elastically grow to higher performance levels by

spreading work over more machines. But, these resources
may subsequently be revoked if higher priority workloads
intensify or additional jobs arrive [13, 33, 34].

2.3 Exploiting Transient Resources for ML
To exploit transient resources, ML frameworks need to

couple agile elasticity with good resource allocation strate-
gies. The elasticity must accommodate efficient bulk extrac-
tion of revoked transient resources with little-to-no warning,
which is akin to correlated failures. Proteus addresses these
needs. Section 3 describes AgileML, which is a parameter
server system that exploits resource reliability tiers (e.g., sta-
ble EC2 on-demand instances and transient spot market in-
stances) to achieve agile elasticity efficiently. Section 4 de-
scribes BidBrain, which uses an aggressive strategy of bid-
ding on multiple spot markets to minimize the cost of train-
ing ML models. Section 5 describes how these two compo-
nents are combined in Proteus.

3. AgileML Design
This section describes AgileML, Proteus’ elastic ML

training component. AgileML introduces the concept of
“tiers of reliability” to organize resources into tiers based
on their expected reliability (and associated cost) and de-
ploy different functional components of the ML frame-
work to different tiers. AgileML, which is implemented as
a C++ library linked by an ML application using it, is built
upon the parameter server architecture described in Sec. 2.1.
Functional components include workers, parameter servers
(ParamServs), and newly introduced Active and Backup pa-
rameter servers (Tab. 1). These solution state servers hold
ML model parameter state and have different fault tolerance
expectations. AgileML uses different combinations of these
components to allow safe and agile exploitation of different
quantities of transient resources.

3.1 Workers and Execution Management
During initialization, an ML application provides Ag-

ileML with an initial list of reliable and transient nodes to
be used, the input data file path, several functions called
by AgileML, and a stopping criterion.2 During execution,
AgileML consists of one process executing on each node.
Each process then starts one worker thread per core. The
worker threads execute the ML application code for model
training—adjusting model parameters as a function of input
(training) data and current solution state. Each worker thread
operates on a disjoint subset of input data items. By default,
input data is partitioned evenly amongst workers. Workers
iterate on the data until reaching the stopping criteria.3

2 The stopping criterion may be a number of iterations, an amount of time,
or a determination of convergence.
3 This is an over-simplification. For greater flexibility, AgileML actually
provides a notion of a clock of work that gets executed on each iteration. It
may be some number of data items (a “mini-batch” of an iteration) or some
number of iterations.
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Figure 4: Three stages of AgileML architecture. Stage 1: ParamServs only on reliable machine. Stage 2: ActivePSs on transient and
BackupPSs on reliable. Stage 3: No Workers on Reliable Machines.

3.2 Architecture
This section describes how AgileML uses reliability tiers

and the mechanism of moving between its different stages
of execution. At a high level, AgileML enables ML appli-
cations to run on a dynamic mix of reliable and transient
machines, maintaining the state required for continued oper-
ation on reliable machines, while taking advantage of tran-
sient machine availability. AgileML uses three stages of sys-
tem functionality partitioning in order to avoid bottleneck-
ing the reliable nodes, as the ratio of transient to reliable
resources grows.

Stage 1: Parameter Servers Only on Reliable Ma-
chines. For most ML applications including K-means, DNN,
Logistic Regression, Sparse Coding, as well as MF, MLR,
and LDA (Sec. 6.2), the workers are stateless, while the
ParamServs contain the current solution state. AgileML’s
first stage spreads the parameter server across reliable ma-
chines only, using transient nodes only for workers, thereby
taking advantage of these two primary levels of machine re-
liability. This has the effect of removing all solution state
from transient machines. Fig. 4a illustrates a running ex-
ample of eight AWS EC2 machines with six spot instances
(transient) and two on-demand instances (reliable).

Pros: By removing parameter state from transient re-
sources, AgileML is able to utilize them without losing
progress when transient resources are revoked (or fail). Un-
like a traditional parameter-server architecture, no check-

ParamServs Serve solution state for workers and al-
ways run on reliable resources

BackupPSs Serve as a hot backup for solution state
served by ActivePSs and always runs on
reliable resources

ActivePSs Serve solution state for workers, pe-
riodically pushing aggregated updates
to BackupPSs, and run on transient re-
sources

Table 1: Types of solution state servers used by AgileML

pointing is required to assist with using transient resources.4

Cons: While stage 1 successfully removes state from tran-
sient resources, it causes a network bottleneck (Sec. 6.4)
when the ratio of transient to reliable resources grows too
large. With 60 transient and 4 reliable machines, for ex-
ample, the network bottleneck to the ParamServs slows the
MF application by over 85%. Limiting this ratio is unde-
sirable, as it caps achievable savings/benefits from transient
resources.

Stage 2: ActivePSs on Transient Machines and Back-
upPSs on Reliable Machines. For higher transient to reli-
able node ratio, AgileML switches to stage 2 (Fig. 4b). Stage
2 uses a primary-backup model for parameter servers, using
transient nodes for an active server (ActivePS) and reliable
nodes for the hot standby (BackupPS). This shifts the heavy
network load from the few reliable resources to the many
transient resources. Solution state is sharded across the set
of ActivePS instances. Workers send all updates and read re-
quests to the ActivePSs, which update their state and push
updates in bulk to the BackupPSs. Solution state affected by
transient node failures or evictions is recovered from Back-
upPSs. Stage 2 improves on stage 1 for higher transient-to-
reliable ratios (Sec. 6.4) but loses to an all-reliable baseline
by 2x for ratios exceeding 63:1.

Stage 3: No Workers on Reliable Machines. Workers
colocated with BackupPSs on reliable machines were found
to cause straggler effects at transient-to-reliable ratios be-
yond 15:1, causing Proteus’ performance drop relative to the
PS baseline. Stage 3 simply removes these workers (Fig. 4c),
allowing AgileML to match all-reliable performance levels
(Sec. 6.4). The optimal ratio threshold to switch to stage 3
depends on the network bandwidth, transient-to-reliable ra-
tio and the size of the model.

Transitioning Between Stages. AgileML dynamically
transitions between these stages to match the number of tran-
sient nodes available. Transitioning between stages 1 and 2
involves switching between a set of ParamServs and the ac-
tive/backup PS pair. This process is described in Sec. 3.3.
4 In AgileML, there is benefit in checkpointing the reliable resources in case
they fail, however as we show later in this section, this checkpointing has
no overhead on system performance in stages 2 and 3.
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spot instances triggers the second transition. The remaining spot instances assume ownership of the evicted input data with minimal delay.

When scaling up, workers are directed to send their requests
to ActivePSs started in the background. When scaling down,
ActivePSs push their updates to BackupPSs, which become
ParamServs. The worker requests are then redirected to the
ParamServs. This transition is done with minimal overhead
in the background. Transitioning between stages 2 and 3
boils down to re-assigning work between reliable and tran-
sient resources. Scaling up, work is offloaded from workers
on reliable nodes to workers on transient nodes, followed
by shutting down the former workers. Transitioning back to
stage 2 requires reassigning input data to reliable workers.
This change of assignment incurs zero run-time overhead,
as it involves just a single worker notification message.5

Elasticity Controller: This component of AgileML makes
decisions to switch between stages based on the transient-
to-reliable ratio and the network bandwidth. It is responsible
for (a) tracking which resources are participating in ongoing
computations, (b) assigning a subset of input data to each
worker, and (c) starting new ActivePSs. On eviction, it re-
shards the solution state and shuts down ActivePSs using
policies discussed next.

3.3 Handling Elasticity: Policy and Mechanism
The toy example in Fig. 5 illustrates how AgileML han-

dles adding and removing resources from an ongoing com-
putation. We evaluate AgileML’s effectiveness at handling
such elasticity in Section 6.6.

Scaling Up. Workers. Once a node becomes available,
and the appropriate software has been initialized, it contacts
the elasticity controller responsible for the job and receives
its input data assignment (see transition to phase 2 in Fig. 5).
It loads the data (from S3 storage for AWS EC2) and sig-
nals the elasticity controller that it’s ready. The elasticity
controller then signals corresponding workers to update their
working sets. ActivePS. AgileML achieves best performance
when running ActivePSs on half of the resources (Sec. 6.4).
This ratio is thus maintained when scaling the resource foot-
print. When the resource footprint increases, AgileML starts
5 Input data assigned to workers on reliable resources is preloaded by
workers on transient resources, simplifying the transition from stage 2 to 3.

new ActivePSs on the longest running transient resources
that do not yet have an ActivePS. It notifies the resource to
host the ActivePS and serve a given partition assignment. A
partition is a unique subset of the parameter state. During
start-up, AgileML divides the parameter state into N parti-
tions, where N is the maximum number of ActivePSs that
can exist at any one point. We found that setting N equal
to half of the maximum number of resources that could be
used by AgileML at any point to be effective. Each parti-
tion is assigned to a ParamServ. In stage 2 and 3 each parti-
tion is also assigned to an ActivePS, which is responsible for
forwarding updates applied to the partition to the BackupPS
that owns it. By using partitions in this way, AgileML avoids
the need to re-shard the parameter state when adding or re-
moving servers, instead re-assigning partitions as needed.

The resource that starts the new ActivePS contacts the
previous partition owner for a copy of the partition. The orig-
inal owner points all workers to the new partition owner.
During ownership propagation, all partition messages are
forwarded to the new ActivePS. Workers and ActivePS ad-
ditions happen in the background with negligible impact on
system performance (Sec. 6.6).

Scaling Down. AgileML differentiates between evictions
and failures based on whether it received a warning, and
it handles them differently. When resources are removed
from an ongoing computation after some warning, such as
the two-minute warning offered by AWS or the 30-second
warning offered by GCE, we call this an eviction. When
resources are removed without warning or with a warning
detected with insufficient lead time, we call this a failure or
an effective failure, respectively.

Evictions. AgileML’s elasticity controller checks for evic-
tion warnings every 5s. These warnings consist of a set of
instances marked for eviction, if any. When this set includes
all transient resources, the elasticity controller signals all
ActivePSs to push their most recent consistent state to the
BackupPSs and cease operation. A special end-of-life flag is
appended to these updates to signal the last message from
ActivePS to BackupPS. When the BackupPSs receive end-
of-life messages from ActivePSs, they signal any workers



on reliable machines (including those getting turned on by
the elasticity controller, as discussed at the end of this sec-
tion) to address read and update requests to them. Note that
the AgileML design makes this scenario simple and fast.

When an eviction is about to take back only some of
the transient resources, the elasticity controller signals the
ActivePSs that are being evicted to either (i) move their
partitions to the ActivePSs that will survive the eviction, or
(ii) move them to transient resources that are going to survive
the eviction and do not yet have an ActivePS running on
them (see transition to phase 3 in Fig. 5). The process for
relocating partitions mirrors the process of adding ActivePSs
above, which includes pointing all surviving workers to the
new partition owner.

Failures. In the case of failures, which are detected via
heartbeat messages, or effective failures, when the eviction
warning is not early enough for all evicted ActivePSs to send
their end-of-life messages to BackupPSs, AgileML performs
a form of on-line roll-back recovery. This roll-back recovery
depends on how many resources have failed.

When all or most of the transient resources fail (usually
due to an effective failure), the BackupPSs will use the last
consistent state6 from the ActivePSs as the new solution
state, and the workers will re-do the work lost in the roll-
back recovery. The ActivePSs send the workers the itera-
tion number of the last iteration included in the new solution
state, and all workers will restart from what is essentially
an online checkpoint. When a single or few resources run-
ning ActivePSs fail, the elasticity controller reassigns parti-
tion ownership from those ActivePSs to other transient re-
sources. This is done by the BackupPSs sending their solu-
tion states to the new owners of the ActivePSs. The surviving
ActivePSs then roll-back to a state consistent with the cur-
rent state of the BackupPSs. This roll-back to a consistent
state is straightforward, because the ActivePSs already store
the aggregate of the delta applied to their local state since the
last time they applied their state to the BackupPSs.

Reacting to the eviction and failures of workers is orches-
trated by the elasticity controller. When a worker is removed
from a computation, the previous owner of the worker’s in-
put data takes ownership for it. A previous owner always
exists when input data is assigned to a transient node. Thus,
there will be no need to stop and load the input data from
storage. To account for the infrequent failure of reliable re-
sources, checkpointing of reliable resources can be used.
In stage 3 of AgileML, checkpointing of reliable resources
has no overhead on ML training speed because there are no
worker threads running on these resources.
6 Recall that parameter server systems often allow flexibility in progress
synchronization among workers and shared state consistency. Often, work-
ers see parameter values that do not yet reflect recent updates from all other
workers, but a bound on the staleness is often enforced [11, 25]. In such
systems, the consistent state corresponds to the latest common iteration and
reflects all updates up to that iteration and no updates afterwards.Achieving
a consistent state requires either synchronization of worker progress or (usu-
ally) some extra buffer memory.

Stage Transitions. AgileML uses the ratio of transient to
reliable resources to determine which stage to use. For ratios
greater than 1:1, AgileML uses stage 2, and for ratios greater
than 15:1, it uses stage 3 (Sec. 6.4). While transitioning be-
tween stages is important for AgileML performance, as the
ratio of transient to reliable resources changes, we find that
perfect threshold settings are not required. For our work, ap-
propriate thresholds for different compute clusters were de-
termined by measuring and comparing system performance
for the three stages at different ratios (Sec. 6.4), resulting in
the 1:1 and 15:1 thresholds as well as the observation regard-
ing low sensitivity. We believe that future work can automate
the threshold selection process for any given cluster.

4. BidBrain Design
BidBrain is Proteus’ resource allocation component. It

keeps track of current and historical market prices for dif-
ferent types of resources (e.g., Amazon EC2 instance types)
and makes allocation decisions of the form ~x, where xi cor-
responds to the set of instances allocated of type i. Fig. 6
illustrates how this allocation vector changes over time as
the allocation footprint managed by BidBrain changes (due
to BidBrain decisions or to evictions).

BidBrain decisions consider several parameters charac-
terizing the application (Table 2), including its ability to
scale with more instances (φ), cost of modifying its resource
footprint (σ), and the cost of evictions (λ). BidBrain’s pri-
mary objective is to minimize cost per unit work. The cur-
rent implementation of BidBrain focuses on Amazon EC2,
but we believe that its mathematical framework and mecha-
nisms can also be applied in other cloud provider settings.

Resource Allocation. BidBrain interfaces with AWS to
acquire new resources. To do so, BidBrain supplies a (in-
stance type, count, bid price) tuple. We call this an allocation
request. An allocation is defined as a set of instances of the
same type acquired at the same time and price. BidBrain’s
total footprint ~x is a set of such allocations that are the el-
ements of ~x. We use different colors in Figures 5 and 6 to
signify different atomic allocations. Resource allocation de-
cisions are made periodically as well as a few minutes before
the termination of each billing hour.

4.1 Formulation
At each allocation decision, BidBrain calculates the to-

tal expected cost and the total expected work by consider-
ing available instance types and their current spot market
prices. BidBrain works with the following free variables: (a)
instance type i to choose, (b) bid delta to bid over the spot
price.

Expected Cost. Given a set of allocations, the total cost
for a given footprint ~x is calculated as the sum over individ-
ual allocation costs CA [xi], where each allocation’s cost is
calculated as the product of its instance count ki and instance
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Figure 6: Expected cost per unit work for the toy example transitions in Fig. 5. Each block represents an allocation (Sec. 4), described by
how many instances are in the allocation (k), instance type, the expected cost of the allocation, and the expected work produced by this
allocation. Each block’s height equates to that allocation’s relative contribution to the cost of the total work done in its phase. Combining
the blocks’ heights in each phase equates to the total expected cost per unit work for that phase. In phase 1, BidBrain has an expensive,
required on-demand allocation (red) that produces no work and a spot allocation (yellow). The on-demand instance type is pre-determined to
be c4.xlarge and is never terminated by BidBrain, even if it negatively affects cost-per-work. In phase 2, BidBrain further amortizes the cost
of the red allocation by adding a second spot allocation [2] (green), which lowers the total expected cost-per-work. This transition increases
its actual cost at that moment, but reduces the final cost by decreasing the amount of time for which the on-demand allocation is needed.

price Pi:

CA =

n∑
i=0

CA[xi] =

n∑
i=0

ki ∗ Pi

One of BidBrain’s features is to reason about the probabil-
ity of free compute it can get if its instances are evicted
before the billing hour expires. If the allocation is evicted,
AWS refunds the amount charged at the beginning of the
current billing hour. To capture this, BidBrain calculates the
expected cost of an allocation by considering the probability
of eviction βi for a given instance type i at a given bid delta.
There are only two possibilities: an allocation can either be
evicted (with probability βi) or it will reach the end of its
billing hour in the remaining tr minutes (with probability
1 − βi). The expected cost can, therefore, be written down
by the definition of expectation (Eq. 1).

CA[xi] = (1− βi) ∗ Pi ∗ ki ∗ tr + βi ∗ 0 ∗ ki ∗ tr (1)

Estimating Evictions. To estimate βi in Eq. 1, BidBrain
uses historical AWS spot market price data. This histori-
cal data is gathered individually for each instance type in
each availability zone and indicates the price at each instant
in time. Combining such data with knowledge that spot in-
stances are evicted when the price rises above the bid, Bid-
Brain computes the historical probability of being evicted
within the hour and the median time to eviction for a given

β Probability that allocation is evicted (0-1)
φ How efficiently application scales (0-1)
σ Overhead of adding/removing resources (min)
λ Overhead of evicting resource (min)
ν Work produced by instance type
ωi Max compute time remaining in allocation i

CA Expected cost of a set of allocations ($)
WA Expected work of a set of allocations
EA Expected cost per work of a set of allocations

Table 2: Summary of parameters used by BidBrain

bid delta. The bid delta is the difference between the bid
price and the market price. Using the AWS spot market trace
from March to June of 2016, we ran simulations with a wide
range of bid deltas [$0.00001,$0.4] and recorded the proba-
bility of getting evicted within the hour, β, and the median
time to eviction. Using this information, BidBrain estimates
the probability of eviction for any allocation.

Expected Work. BidBrain explicitly reasons about the
expected amount of work each allocation is expected to
produce. To capture this, BidBrain computes the expected
useful compute time ∆ti for each allocation by considering
factors such as eviction overhead, overhead for resource
addition, and scalability of the application.

The maximum useful compute time of any allocation is
the time remaining in the current billing hour ωi. If Bid-
Brain expects the allocation to be evicted prior to the end
of the billing hour, it reduces ωi accordingly. The eviction
of any allocation reduces the useful compute of each allo-
cation xi by the eviction overhead λ of the application. The
probability of an eviction for a set of allocations is computed
as: 1 −

∏n
j=0(1 − βj), where βj is the probability of evic-

tion for allocation j. When considering removing or adding
resources, BidBrain subtracts this overhead σ from the ex-
pected compute time for each allocation (Eq. 2).

The expected work for an allocation is the product of
its resources ki, expected useful compute time ∆ti and the
work produced per time by that instance type ν.7 BidBrain
expresses the expected work for a set of allocations as the
sum of each allocation’s expected work reduced by the scal-
ability overhead φ of the application (Eq. 3).

∆ti = ωi − (1−
n∏

j=0

(1− βj)) ∗ λ− σ (2)

WA = (

n∑
i=0

ki ∗∆ti ∗ ν) ∗ φ (3)

7 For ML workloads performed by AgileML, work produced is propor-
tional to the number of cores on an instance. For example, ν of a c4.2xlarge
instance (8 cores) is equivalent to 2 * ν of a c4.xlarge instance (4 cores).



Table 2 summarizes the parameters used by BidBrain. In
future work, we plan to automate the process of determining
φ, σ, λ and ν. Currently, we set φ, σ, λ empirically (see
experiment description in Sections 6.5 and 6.6). ν is set
to equal the number of virtual cores in the instance and is
a proxy for how much work an application is expected to
achieve on that instance per unit time. φ measures the first
order Taylor series expansion coefficient of the application’s
scalability curve as a function of instance count of a given
type. σ and λ measure for how long the application does not
make progress after a change in the resource footprint.

4.2 Resource Acquisition
BidBrain acquires resources xi only if they lower the

expected cost per work of its footprint ~x. Expected cost per
work for a set of allocations is approximated as the expected
cost divided by the expected work produced (Eq. 4).

EA = CA/WA (4)
During every “decision point”, BidBrain builds a list of

possible allocations that it can make. This set of possible al-
locations is constructed by pairing different bid prices with
different instance types. The range of possible bid prices in-
cludes [$.0001, $.4] over the current spot market price. Once
BidBrain constructs the set of possible allocations, it com-
putes the cost per work for the current allocations and the
cost per work for current allocations plus each of the pos-
sible allocations. If the cost per work for the best possible
allocation is smaller than for the current allocations, Bid-
Brain will send this allocation request to AWS. As described
earlier, each allocation is made for the duration of the billing
hour. This means that briefly before the end of an allocation’s
billing hour, BidBrain compares the cost per work if the allo-
cation is renewed or terminated. If the cost per work is lower
when the allocation is not renewed, BidBrain will terminate
all the instances in the allocation prior to them reaching the
next billing hour. In addition to spot resources, BidBrain ac-
quires the required amount of on-demand resources (reliable
instances in Fig 4). It does not consider terminating these
resources even if they negatively affect cost-per-work.

4.3 Application Compatibility
BidBrain’s design is compatible with applications beyond

AgileML. It should work well for batch computations, where
optimizing cost per unit work makes sense, that are able to
efficiently add and remove large portions of their resource
footprint quickly and efficiently. In future work, we plan to
explore other optimization metrics to fit other elastic appli-
cation types.

5. Proteus Implementation
This section describes how Proteus incorporates BidBrain

and AgileML and how it connects to AWS. Figure 7 shows a
high level overview. As described in Section 3, the user links
an ML application to Proteus and specifies the location of the
training data-set. The user is also responsible for providing
the security credentials necessary to connect to AWS.

Figure 7: The Proteus architecture consists of the resource allo-
cation component, BidBrain, and the elastic ML framework, Ag-
ileML.

Upon start-up, Proteus connects AgileML to BidBrain via
a ZMQ message that specifies the application characteris-
tics (Sec. 4). Proteus then connects to AWS, gathers the cur-
rent spot market price via boto.ec2 API calls and loads the
historic spot market data, both of which are directed into
BidBrain. Using the information about the AWS spot mar-
ket in combination with information about the characteris-
tics of the ML application, BidBrain builds allocation re-
quests (Sec. 4), which Proteus sends to AWS via the boto.ec2
API. Upon receiving the allocation requests, AWS returns a
set of spot request ids, which are translated by BidBrain to
the assigned AWS EC2 instances. Once these instances be-
come reachable via SSH, BidBrain sends a ZMQ message
to AgileML’s elasticity controller containing the list of IP
addresses and sizes of the instances in the new allocation.

BidBrain considers making new allocation requests to
AWS every two minutes, briefly before the end of a billing
hour of any current allocations, and immediately follow-
ing an eviction. BidBrain monitors AWS for eviction noti-
fications. Upon receiving an eviction notification, BidBrain
translates it to the ids of the resources that are affected and
notifies AgileML’s elasticity controller. Proteus assumes that
multiple ML applications are executed in sequence. Upon
completing the final job in the queue, Proteus immediately
terminates the on-demand resources. It then waits until the
end of current billing hours to terminate the spot allocations,
in hope that they are evicted by AWS prior to the end of the
billing hour, lowering the overall cost.

In the current design, there is no redundancy for BidBrain
or the elasticity controller. If either components fails, Pro-
teus is still able to continue making progress. Either compo-
nent can be restarted, if it fails, and synchronized with the
ongoing computation.

6. Evaluation
This section evaluates Proteus’ effectiveness. The results

support a number of findings, including: 1) In the context of
AWS, Proteus’ exploitation of spot market resources signifi-
cantly reduces cost (e.g., by ≈85% compared to on-demand
only) and outperforms standard bidding policy combined
with a checkpointing-based elasticity in terms of both cost
(by 42%–47%) and runtime (by 32%–43%); 2) Proteus’
elasticity support introduces minimal overhead to a tradi-
tional non-elastic parameter-server configuration; 3) Proteus



enacts bulk machine additions and revocations with minimal
disruption, performing most setup actions in the background.

6.1 Experimental Setup
Experimental Platforms. We report results for experi-

ments on two virtual cluster configurations on AWS. Cluster-
A is a cluster of 64 Amazon EC2 c4.2xlarge instances. Each
instance has 8 vCPUs and 15 GB memory, running 64-bit
Ubuntu Server 14.04 LTS (HVM). Cluster-B is a cluster of
128 Amazon EC2 c4.xlarge instances. Each instance has 4
vCPUs and 7.5 GB memory, running 64-bit Ubuntu Server
14.04 LTS (HVM). From our testing using iperf, we ob-
serve a bandwidth of 1 Gbps between each pair of EC2
instances.

6.2 Application Benchmarks
We use three popular iterative ML applications.
Matrix Factorization (MF) is a technique (a.k.a. col-

laborative filtering) commonly used in recommendation sys-
tems, such as recommending movies to users on Netflix. The
goal is to discover latent interactions between the two enti-
ties (e.g., users and movies). Given a partially filled matrix
X (e.g., a matrix where entry (i, j) is user i’s rating of movie
j), MF factorizes X into factor matrices L and R such that
their product approximates X (i.e., X ≈ LR). Like oth-
ers [11, 14, 24], our MF implementation uses the stochastic
gradient descent (SGD) algorithm. Each worker is assigned a
subset of the observed entries in X; in every iteration, each
worker processes every element of its assigned subset and
updates the corresponding row of L and column of R based
on the gradient. L and R are stored in the parameter server.

Our MF experiments use the Netflix dataset, which is a
480k-by-18k sparse matrix with 100m known elements, and
factor it into two matrices with rank 1000. We also use a
synthetically enlarged version of the Netflix dataset that is
256 times the original. It is a 7683k-by-284k sparse matrix
with 4.24 billion known elements with rank 100.

Multinomial Logistic Regression (MLR) is a popu-
lar model for multi-way classification, often used in the
last layer of deep learning models for image classifica-
tion [23] or text classification [26]. In MLR, the likelihood
that each (d-dimensional) observation x ∈ Rd belongs to
each of the K classes is modeled by softmax transformation
p(class=k|x) =

exp(wT
k x)∑

j exp(wT
j x)

, where {wj}Kj=1 are the linear
(d-dimensional) weights associated with each class and are
considered the model parameters. The weight vectors are
stored in the parameter server, and we train the MLR model
using SGD, where each gradient updates the full model [8].

Our MLR experiments use the ImageNet dataset [29] with
LLC features [35], containing 64k observations with a fea-
ture dimension of 21,504 and 1000 classes.

Latent Dirichlet Allocation (LDA) is an unsupervised
method for discovering hidden semantic structures (topics)
in an unstructured collection of documents, each consist-
ing of a bag (multi-set) of words. LDA discovers the top-

ics via word co-occurrence. For example, “Sanders” is more
likely to co-occur with “Senate” than “super-nova”, and thus
“Sanders” and “Senate” are categorized to the same topic
associated with political terms, and “super-nova” to another
topic associated with scientific terms. Further, a document
with many instances of “Sanders” would be assigned a topic
distribution that peaks for the politics topics. LDA learns the
hidden topics and the documents’ associations with those
topics jointly. It is used for news categorization, visual pat-
tern discovery in images, ancestral grouping from genet-
ics data, community detection in social networks, and other
such applications.

Our LDA solver implements collapsed Gibbs sampling [18].
In every iteration, each worker goes through its assigned
documents and makes adjustments to the topic assignment
of the documents and the words. The LDA experiments use
the Nytimes dataset [5], containing 100m words in 300k doc-
uments with a vocabulary size of 100k. They are configured
to classify words and documents into 1000 topics.

6.3 Cost Savings with Proteus
Proteus enables significant cost reductions on infrastruc-

tures that offer inexpensive transient machines. Fig. 1 sum-
marizes the cost and time savings using BidBrain and Ag-
ileML for the MLR application. This section drills down fur-
ther by evaluating Proteus’ ability to reduce cost on EC2,
relative to using only reliable on-demand machines, by ana-
lyzing the AWS Spot Market Traces from June 11, 2016 to
August 14, 2016 for the US-EAST-1 region (all 4 zones).8

We also compare the cost savings achieved by Proteus to
those from existing approaches (see Section 8), which com-
bine a checkpointing-based scheme for exploiting spot mar-
ket machines with a standard spot market bidding strategy.

We perform cost savings analysis with long-term AWS
traces, rather than experiments on EC2 for several reasons.
Simulations on long-term AWS traces let us experiment with
different approaches applied to the same market data, allow-
ing for fair comparisons. Using AWS traces also allows us
to gather data points across many months to get a fuller
picture of expected behavior than our budget-limited ex-
periments could otherwise provide. For each scheme and
bidding model considered, we present the average cost (rel-
ative to full on-demand price) across 1000 randomly chosen
day/time starting points in each zone. We perform experi-
ments on durations with length of 2 and 20 hours, which
is representative of long-running ML experiments (e.g.,
4 hours for MLR) as well as the common practice of per-
forming sequences of ML jobs for hyperparameter explo-
rations.

We present cost results as average cost per job, so for
accounting purposes we do not charge a given job for any
minutes that remained in a job’s final billing hours (e.g., if
20 minutes left, the job is charged for only 2/3 of the cost of
8 We used AWS Spot Market Traces from March 14, 2016 to Jun 10, 2016
to train the β parameter used in BidBrain.
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the hour). We did this because the left over time is used by
the following job in a sequence. This accounting was done
the same way for all experiments, providing no benefit to
Proteus.

Checkpointing-Based Scheme. As a comparison point
for AgileML, we consider a scheme that tries to run entirely
on spot market machines, using checkpointing to recover
from evictions. We assume an MTTF-based checkpointing
frequency, like that used in Flint [30]. We observe a resulting
average checkpointing overhead of 17% for MF on both
Cluster-A and Cluster-B (Sec. 6.3) when bidding the on-
demand price, from the combined overheads of producing
a consistent checkpoint state (recall that bounded staleness
is allowed during ML application execution) and storing it.
These overhead values are consistent with those reported by
others [30].

Standard Bidding Strategy. As a comparison point for
BidBrain, we consider an oft-used bidding strategy that se-
lects the resource type with the lowest current market price
and bids the on-demand price. It uses these resources until
they are evicted, at which point it again selects the resources
with the lowest current market price and bids the on-demand
price. This is the default bidding policy used by Spot Fleet
EC2, a service provided by AWS for users to acquire alloca-
tions of spot resources.

Cost Savings Results. Figure 8 and 9 show the cost
savings and run-time for three different configurations for
jobs of 2 hours and 20 hours, respectively, relative to run-
ning on 64 on-demand machines from Cluster-A: (1) the
standard bidding strategy combined with the checkpointing-
based scheme (blue). (2) the standard bidding strategy com-
bined with AgileML, allowing evaluation of the incremen-
tal benefit of AgileML over the checkpointing-based scheme
(green). (3) Proteus which combines BidBrain and AgileML
(red). Comparing Proteus to the second configuration al-
lows evaluation of the additional benefit of BidBrain over
the standard bidding strategy.

The results demonstrate that Proteus significantly reduces
both cost and run-times. On average, Proteus reduces cost by
83%–85% compared to traditional execution on on-demand
machines and by 42%–47% compared to the state-of-the-
art approach (Standard+Checkpoint). In addition to signif-
icantly lowering costs, Proteus also reduces run-times by
32%–43%. The results also show that each of BidBrain and
AgileML contribute significantly to Proteus’ overall cost and
runtime improvements.

Attribution of Benefits. Proteus’ superior performance
arises from several factors. AgileML’s ability to perform
agile elasticity, ability to efficiently handle evictions, and
lack of run-time overhead reduces the cost by 18%–20%
compared to the checkpointing-based scheme (see blue
and green bars in Figure 8 and 9). Similar benefits are
seen when evaluating AgileML vs. the checkpointing-based
scheme combined with BidBrain. The remaining improve-
ments come from BidBrain’s ability to effectively exploit
the spot market. BidBrain reduces cost and run-time by pro-
viding opportunities for free computing and projecting how
resource allocations impact work throughput.
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Figure 10: Breakdown of machine hours (for 2-hour jobs) among
on-demand resources, spot resources (not evicted), and free re-
sources (spot resources evicted prior to end of billing hour).

Free computing occurs when an allocation produces use-
ful work but is evicted by AWS before the end of a billing
hour. The user receives a refund for the last partial hour,
which means that any work produced by the allocation dur-
ing the current billing hour has no cost to the user. Users in-
crease their likelihood of getting free computing by bidding
closer to the current spot market price, which increases the
likelihood of evictions. When executing applications with
significant eviction overheads, regularly bidding just above
the current market price hoping to gain free computing is not
an effective strategy. BidBrain accounts for eviction over-
heads in making decisions about how much above the mar-
ket price to bid. We experimented with always bidding just
above the market price to acquire free computing as often as
possible, but it increased the run-time of applications (3-4x)
and resulted higher cost due to suffering too many evictions
after too short a period of time. BidBrain’s predictions of
eviction likelihood and times are effective enough to find a
happy medium. On average, 32% of Proteus’ computing is
free computing, as shown in Fig. 10.

Experiments in the Wild. In addition to simulations, we
ran a number of Proteus jobs on AWS. Although the results
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Figure 12: AgileML stage 2 with 4 reliable
and 60 transient compared to stage 1 (same
ratio; magenta) and traditional (64 reliable).

0
1
2
3
4
5
6
7

Ti
m

e 
pe

r i
te

ra
tio

n 
(s

ec
)

 

 

Workers on Reliable
No workers on Reliable
Traditional (High Cost)

Figure 13: AgileML stage 3 (red) with 1
reliable and 63 transient compared to stage 2
(same ratio; blue) and traditional.

cover a much smaller sample size than our simulations, the
observed behavior is consistent with the simulation results.

6.4 Efficiency with AgileML Tiering
AgileML enables execution on a mix of reliable and tran-

sient machines, and efficient scale-up and scale-down, while
always maintaining state required for continued operation on
reliable machines. To avoid the reliable machines becoming
a bottleneck, AgileML uses three stages of functionality par-
titioning (see Section 3.2), decreasing reliance on reliable
machines as the ratio of transient to reliable increases. (Of
course, higher ratios are better from a cost standpoint, be-
cause transient machines are often 70–80% cheaper.) This
section evaluates AgileML’s performance relative to the tra-
ditional parameter-server architecture run entirely on high-
cost reliable machines, in which all functionality (worker
and parameter server) is partitioned among all machines,
showing that AgileML avoids performance loss at least to
a ratio of 63 transient machines to 1 reliable machine. All
results in this section are for the MF application with the
Netflix data set on Cluster-A, but results for the other appli-
cations and Cluster-B are consistent and omitted only due to
space constraints.

Stage 1: Parameter Servers only on Reliable Ma-
chines. The first stage spreads the parameter server across
the reliable machines, rather than all machines, using tran-
sient machines only for worker processes.

Figure 11 shows the time-per-iteration for different num-
bers of machines running parameter server shards (Param-
Servs) in a 64-machine Cluster-A, representing different ra-
tios of transient to reliable machines under the stage 1 con-
figuration. All 64 machines run workers. The 64 Param-
Serv case, which is labeled “Traditional” in the graph, rep-
resents the traditional parameter server architecture in which
all machines are reliable and run both worker and parameter
server processes. The results show that stage 1 has negligi-
ble slowdown for a small ratio (e.g., 1:1, represented by “32
ParamServ”) of transient to reliable machines, but introduces
significant slowdown as the ratio increases. The slowdown
is caused by network bottlenecks caused by many workers
communicating with a relatively smaller number of Param-
Servs.

Stage 2: ActivePSs on Transient Machines and Back-
upPSs on Reliable Machines. To avoid the network bottle-
neck for higher ratios, stage 2 switches to a tiered primary-
backup model, using reliable machines for continuity but

not requiring them to serve as active parameter servers for
a much larger number of workers.

Figure 12 shows the time-per-iteration for different con-
figurations in a 64-machine Cluster-A that consists of 4 re-
liable machines and 60 transient machines. The “4 Param-
Servs” and “Traditional” bars described above for Figure 11
are included as well, for comparison. The other three bars
represent running ActivePSs on different numbers of tran-
sient machines, together with BackupPSs on the 4 reliable
machines. All 64 machines run worker processes, in each
case. The results show that the ActivePS-based architecture
with 32 ActivePSs introduces ≈18% slowdown compared
to the traditional parameter-server architecture, when using
a 15:1 ratio of transient to reliable machines. This slowdown
does not occur at 7:1 and represents the beginning of the
straggler problem addressed by stage 3.

Stage 3: No Workers on Reliable Machines. When the
ratio of transient to reliable machines increases beyond 15:1,
we observe even larger slowdowns for AgileML stage 2 rel-
ative to the traditional parameter-server architecture. This
slowdown is caused by the workers running on reliable ma-
chines becoming stragglers; the network load of running
BackupPSs for a much larger number of ActivePSs inter-
feres with worker communication. To solve this problem,
stage 3 does not run workers on the reliable machines when
the ratio is very high. While this reduces aggregate worker
computation power, stage 3 is only used when the reduction
is small because the fraction of reliable machines is low.

Fig. 13 shows time-per-iteration with and without work-
ers on the one reliable machine in a 64-machine Cluster-
A that consists of 1 reliable machine and 63 transient ma-
chines. The one reliable machine runs only a BackupPS. The
“Traditional” bar is again shown for comparison. The results
show that, by shutting down reliable machine workers once
they become stragglers, AgileML is able to match the per-
formance of the traditional parameter-server architecture at
a 63:1 ratio of transient to reliable machines.

Stage 3 provides the best performance only as the ratio
of transient vs. reliable machines increases. Thus, all three
stages are needed for AgileML to achieve high performance
across a range of possible ratios. To illustrate, Fig. 14 com-
pares time-per-iteration attained with the same footprint (8
reliable + 8 transient machines), but in two different modal-
ities: stage 2 and stage 3. Stage 2 is clearly best for this 1:1
ratio, unlike Fig. 13, where the ratio was 63:1.
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Figure 14: AgileML running on 8 reliable and 8 transient machines
in stage 2 and stage 3 mode. Stage 2 is better for lower transient-
to-reliable ratios.

6.5 AgileML Scalability
This section confirms that AgileML scales well as ma-

chines are added, like the traditional parameter-server ar-
chitecture has been shown to do. Figure 15 shows time-
per-iteration for the LDA application as a function of the
number of Cluster-A machines used. (We observe the same
scaling behavior for the other ML applications tested.) So,
strong scaling is evaluated, and the curve labeled “Ideal”
corresponds to perfect scaling of the 4-machine case. The
4-machine case uses the traditional parameter-server archi-
tecture to provide a baseline. The 8-machine case uses the
stage 1 configuration for 4 reliable and 4 transient machines.
The 16-, 32-, and 64-machine cases use the stage 3 config-
uration for 1 reliable machine and the remainder transient.
These results show that AgileML scales effectively, exploit-
ing available transient machines to speed up applications.

6.6 Efficiency of AgileML Elasticity
This section confirms that AgileML’s mechanisms for

bulk incorporation and eviction of machines induce minimal
disruption of the ongoing ML application. Figure 16 shows
time-per-iteration for each of 45 MF iterations on Cluster-A
machines. The first 10 iterations execute on 4 reliable ma-
chines. 60 transient machines are incorporated during itera-
tion 11, resulting in immediate speedup consistent with Fig-
ure 15. Adding the 60 machines causes no disruption be-
cause they are started, initialized, and prepared in the back-
ground, signaling the elasticity controller for final incorpora-
tion when ready. The opposite change is made in iteration 35,
evicting the 60 transient machines from the computation, as
though in reaction to an eviction notice. A 13% blip in per-
formance is seen during the iteration in which the eviction is
done, after which the time-per-iteration stabilizes, returning
to its full 4-machine value. The blip occurs because of net-
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Figure 15: AgileML scalability for LDA. Showing time-per-
iteration when using 4 to 64 machines.
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Figure 16: AgileML starts with 4 reliable resources, adds 60
transient resources at iteration 11, evicting 35 transient resources
at iteration 35.

work overhead in aggressively bringing up-to-date the Back-
upPSs and transitioning them to being active ParamServs.

7. Discussion and Limitations
The popularity of systems like Proteus may increase

spot market prices. We believe, however, that infrastruc-
ture clouds will continue to offer cheaper transient resources
in order to monetize resources that would otherwise be idle
due to varying demand on resources provisioned for con-
tract customers. We also believe that AWS will eventually
transition to a free market, where users are charged the bid
price instead of the market price. This transition will ren-
der the commonly used strategy of bidding far above the
market price obsolete, further motivating the need for intel-
ligent bidding strategies, such as the one we instantiate with
BidBrain.

BidBrain’s allocation policies use AWS market price in-
formation to estimate resource reliability. However, Bid-
Brain’s allocation policies could be retargeted to be appli-
cable beyond the AWS spot market. While this would elimi-
nate the benefit received from free compute, only a portion of
BidBrain’s wins comes from such AWS specifics (Sec. 6.3).
Instead of basing resource reliability predictions on histori-
cal AWS spot market data, BidBrain may perform reliabil-
ity calculations by observing available resource capacity, its
dynamics over time, and the activity of higher-priority jobs
sharing the cluster. For example, in a private cluster setting,
purchase cost (Pi) may be the same constant value for any
best-effort allocation, but the expected work (Eq. (3)) still
varies based on expected time to eviction (Eq. (2)).

Proteus is designed to work with stateless AgileML work-
ers, which reduces system complexity and obviates the
need for I/O intensive state-management operations, such as
checkpointing. Indeed, the elasticity controller only needs to
coordinate easily reassigned state in ActivePSs and Param-
Servs. This design choice is further motivated by the fact
that most ML training algorithms can be implemented with
stateless workers.

8. Prior Work
Previous work exploits transient resources using check-

pointing, DHTs, RDDs, and heuristic bidding strategies.
Checkpointing. Checkpointing can be used to preserve

state when using transient resources [19, 30, 31]. For ex-
ample, a non-elastic computation can be started on EC2
spot market machines and checkpointed regularly. If the ma-



chines are revoked, the computation can be restarted on an-
other set of machines from the last completed checkpoint.
Gupta et al. [19] propose this approach for scientific com-
putations. Parameter server architectures such as Tensor-
Flow [6], MxNet [9], Petuum [37], LazyTables [11], and
IterStore [12] provide no explicit mechanism for exploiting
transient resources, and hence would likewise rely on check-
pointing. A single machine failure causes most of these sys-
tems to restart an ongoing computation from the most re-
cent checkpoint.9 Although this is reasonable in small-to-
medium clusters under traditional failure models, it can incur
high overheads in elastic settings due to the frequency of re-
vocations (e.g., all the spikes in Figure 3). Moreover, dynam-
ically adding machines to running ML applications is not
supported by these frameworks. To do so would seem to re-
quire stopping the computation in a consistent state, adding
the resources, adjusting the mapping of computation tasks
to machines and copying any needed state accordingly, and
then restarting. (Section 3.3 describes AgileML’s alternative,
efficient approach.) We hope this work will motivate other
ML frameworks to become agile elastic, and when they do,
we believe they will integrate well with BidBrain and pro-
vide a great comparison for AgileML. In our experimental
study, we compare Proteus’ explicit elasticity support to this
checkpointing-based approach.

Distributed Hash Tables (DHTs). The parameter server
system described by Li et al. [25] includes support for adding
and removing machines during execution. To realize this fea-
ture, the system uses a direct-mapped DHT design based on
consistent hashing, wherein each parameter server process is
responsible for a particular key range, and parameter value
replication. Protocols for adding and removing machines are
described. While DHTs are effective for adding or removing
resources one-at-a-time, we believe that Proteus’ approach
to elasticity is better suited to the bulk addition and removal
of nodes that characterize the transient resource availabil-
ity discussed above. Li et al. did not evaluate the speed of
node set changes, but we expect that it would be insufficient
to address revocation of a sizable subset of cheap machines
within the limited warning period provided. The replication
mechanism also would not solve this issue, because bulk re-
vocation is akin to correlated failure of many nodes, while
the mechanism is designed for independent failures.

Spark and RDDs. Spark achieves fault tolerance with
RDDs, storing deterministic transformations for subsequent
replay on recovery from checkpoint. Flint [30], concurrently
with our work, proposed a system for running Spark appli-
cations on transient machines. Unlike our tiered approach
leveraging a mix of transient and non-transient machines
simultaneously, Flint runs ML workloads entirely on tran-
sient nodes,10 like the checkpointing approach above. RDDs
9 Tensorflow has a mechanism for handling single machine failures via its
straggler mitigation mechanism.
10 or entirely on non-transient nodes in the rare cases when they are cheaper

reduce the cost of checkpointing/recovery for Spark appli-
cations by selectively choosing the set of RDDs needed.
Whereas Flint relies heavily on the Spark’s computing model
in exploiting transient machines, AgileML enables exploita-
tion of such resources for parameter server systems, which
are different and much more efficient for iterative conver-
gent ML (Sec. 2.1). Furthermore, Proteus’ aggressive allo-
cation strategy on the spot market provides significant sav-
ings, including 32% free computing on average. In contrast,
Flint only considers switching when current resources are
revoked and only bids the on-demand price, corresponding
to Standard+AgileML in our graphs.

Bidding Strategies. Bidding strategies for EC2 spot in-
stances have been studied [7, 32, 39]. Agmon et al. [7] show
minimal correlation between near term AWS spot prices and
spot instance availability. Marathe et al. [28] propose us-
ing redundancy across AWS zones for HPC computations
on EC2. For interactive workloads, Flint [30] seeks to di-
versify across zones and machine classes to minimize revo-
cation probability. Spot Fleet EC2, an AWS service, allows
users to specify a resource capacity target and automatically
maintain that target, replacing evicted instances. It is appli-
cation agnostic, however, and does not take into account any
application-level concerns, such as maximizing performance
per unit cost. By default, Spot Fleet follows the same config-
ured strategy as the standard bidding policy, bidding the on-
demand price on the currently cheapest available resource
(Sec. 6.3). We show significant improvements over such a
bidding strategy.

9. Summary
Proteus aggressively exploits transient revocable ma-

chines to complete ML model training faster and cheaper.
For example, Proteus can exploit EC2’s spot market to save
≈85% compared to using only on-demand machines. By
combining non-transient (e.g., on-demand) and transient
(spot) machines, Proteus can rapidly and efficiently incor-
porate transient resources and deal with revocations, which
combines with its aggressive allocation strategy to save
≈50% compared to a state-of-the-art checkpointing-based
approach using a standard spot market bidding strategy.
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